Investigation of Top/Bottom Electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

T. Pedersen1, C.C. Hindrichsen1, K. Hansen2, R. Lou-Moeller3 and E.V. Thomsen1

1 Department of Micro and Nanotechnology – DTU, Kgs. Lyngby, 2800 Denmark
2 Ferroperm Piezoceramics A/S, Kvistgaard, 3490 Denmark,
3 InSensor A/S, Kvistgaard, 3490 Denmark

Key words: PZT thick film, top electrode, bottom electrode, MEMS, accelerometer, pMUT

ABSTRACT

Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(Zr\textsubscript{x}Ti\textsubscript{1-x})O\textsubscript{3} (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process with a line width down to 3 µm. A 700 nm thick ZrO\textsubscript{2} layer as insulating diffusion barrier layer is found to be insufficient as barrier layer for PZT on a silicon substrate sintered at 850 °C. EDX shows diffusion of Si into the PZT layer.